3.759 \(\int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=103 \[ \frac {(2+2 i) a^{3/2} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \]

[Out]

(2+2*I)*a^(3/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(
1/2)/d-2*a*cot(d*x+c)^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4241, 3545, 3544, 205} \[ \frac {(2+2 i) a^{3/2} \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((2 + 2*I)*a^(3/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]
*Sqrt[Tan[c + d*x]])/d - (2*a*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3545

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*b*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m - 1)*(a*c - b*d)), x] + Dist[(2*a^2)/(
a*c - b*d), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f},
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2]

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps

\begin {align*} \int \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx &=\left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {(a+i a \tan (c+d x))^{3/2}}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\\ &=-\frac {2 a \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}+\left (2 i a \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 a \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}+\frac {\left (4 a^3 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {(2+2 i) a^{3/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{d}-\frac {2 a \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.33, size = 105, normalized size = 1.02 \[ -\frac {2 a e^{-i (c+d x)} \sqrt {\cot (c+d x)} \left (e^{i (c+d x)}-\sqrt {-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right ) \sqrt {a+i a \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(-2*a*(E^(I*(c + d*x)) - Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]
])*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(d*E^(I*(c + d*x)))

________________________________________________________________________________________

fricas [B]  time = 0.95, size = 302, normalized size = 2.93 \[ -\frac {8 \, \sqrt {2} a \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )} - \sqrt {\frac {32 i \, a^{3}}{d^{2}}} d \log \left (\frac {{\left (\sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {32 i \, a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} + 8 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right ) + \sqrt {\frac {32 i \, a^{3}}{d^{2}}} d \log \left (-\frac {{\left (\sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \sqrt {\frac {32 i \, a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} - 8 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{2 \, a}\right )}{4 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(8*sqrt(2)*a*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)
)*e^(I*d*x + I*c) - sqrt(32*I*a^3/d^2)*d*log(1/2*(sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(32*I*a^3/d^2)*sqrt(
a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) + 8*I*a^2*e^(I*d*x +
I*c))*e^(-I*d*x - I*c)/a) + sqrt(32*I*a^3/d^2)*d*log(-1/2*(sqrt(2)*(d*e^(2*I*d*x + 2*I*c) - d)*sqrt(32*I*a^3/d
^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1)) - 8*I*a^2*e^
(I*d*x + I*c))*e^(-I*d*x - I*c)/a))/d

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cot \left (d x + c\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2), x)

________________________________________________________________________________________

maple [B]  time = 1.63, size = 575, normalized size = 5.58 \[ -\frac {\left (2 i \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \arctan \left (\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+1\right ) \sin \left (d x +c \right )+2 i \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \arctan \left (\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-1\right ) \sin \left (d x +c \right )+i \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \ln \left (-\frac {\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}{\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}\right ) \sin \left (d x +c \right )+i \sin \left (d x +c \right ) \sqrt {2}-2 \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \arctan \left (\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}+1\right ) \sin \left (d x +c \right )-2 \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \arctan \left (\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}-1\right ) \sin \left (d x +c \right )-\sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \ln \left (-\frac {\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{\sqrt {2}\, \sqrt {\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right )-\cos \left (d x +c \right )-\sin \left (d x +c \right )+1}\right ) \sin \left (d x +c \right )+\cos \left (d x +c \right ) \sqrt {2}-\sqrt {2}\right ) \left (\frac {\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right )^{\frac {3}{2}} \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}\, a}{d \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) \cos \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

-1/d*(2*I*sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*arctan(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+1)+2
*I*sin(d*x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*arctan(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-1)+I*sin(d*
x+c)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*ln(-(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)-cos(d*x+c)-
sin(d*x+c)+1)/(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1))+I*2^(1/2)*sin(d
*x+c)-2*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*arctan(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)+1)*sin(d*x+c)-2*(
(-1+cos(d*x+c))/sin(d*x+c))^(1/2)*arctan(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)-1)*sin(d*x+c)-((-1+cos(d*x
+c))/sin(d*x+c))^(1/2)*ln(-(2^(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)+cos(d*x+c)+sin(d*x+c)-1)/(2^
(1/2)*((-1+cos(d*x+c))/sin(d*x+c))^(1/2)*sin(d*x+c)-cos(d*x+c)-sin(d*x+c)+1))*sin(d*x+c)+cos(d*x+c)*2^(1/2)-2^
(1/2))*(cos(d*x+c)/sin(d*x+c))^(3/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*sin(d*x+c)/(I*sin(d*x+c)+c
os(d*x+c)-1)/cos(d*x+c)*2^(1/2)*a

________________________________________________________________________________________

maxima [B]  time = 1.00, size = 544, normalized size = 5.28 \[ \frac {{\left (\left (2 i - 2\right ) \, a \arctan \left (2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + 2 \, \sin \left (d x + c\right ), 2 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + 2 \, \cos \left (d x + c\right )\right ) + \left (i + 1\right ) \, a \log \left (4 \, \cos \left (d x + c\right )^{2} + 4 \, \sin \left (d x + c\right )^{2} + 4 \, \sqrt {\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1} {\left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )^{2}\right )} + 8 \, {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} {\left (\cos \left (d x + c\right ) \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + \sin \left (d x + c\right ) \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )\right )}\right )\right )} {\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} \sqrt {a} + {\left ({\left (-\left (2 i + 2\right ) \, a \cos \left (d x + c\right ) - \left (2 i - 2\right ) \, a \sin \left (d x + c\right )\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right ) + {\left (\left (2 i - 2\right ) \, a \cos \left (d x + c\right ) - \left (2 i + 2\right ) \, a \sin \left (d x + c\right )\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right ) - 1\right )\right )\right )} \sqrt {a}}{{\left (\cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (2 \, d x + 2 \, c\right )^{2} - 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )}^{\frac {1}{4}} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

(((2*I - 2)*a*arctan2(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*sin(d*x + c), 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*c
os(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + 2*cos(d*x + c)) + (I + 1
)*a*log(4*cos(d*x + c)^2 + 4*sin(d*x + c)^2 + 4*sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2
*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c) - 1))^2) + 8*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c
)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c) - 1)))))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sqrt(a) + ((-
(2*I + 2)*a*cos(d*x + c) - (2*I - 2)*a*sin(d*x + c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1))
+ ((2*I - 2)*a*cos(d*x + c) - (2*I + 2)*a*sin(d*x + c))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) - 1
)))*sqrt(a))/((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

int(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(3/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(3/2)*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________